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Abstract

We present an Integrated Planning and Control (IPC) framework
for cooperative driving of car-like robots, extended to support multi-
agent coordination via Vehicle-to-Vehicle (V2V) communication. Our
work focuses on static but spatially constrained environments where
collision avoidance is critical. While the environment lacks dynamic ob-
stacles, we demonstrate that conventional IPC—where each agent inde-
pendently selects reference points and computes control actions—can
lead to deadlocks or inefficient behavior due to uncoordinated reference
selection. To address this, we formulate a joint optimization problem
that integrates local invariant set computations with inter-agent co-
ordination, enabled through V2V sharing of geometric and positional
information. Using two simulated scenarios—a shared-goal deadlock
case and a distributed-goal grid navigation task—we show that multi-
agent IPC enables safe and efficient convergence where independent
control fails, even under purely static constraints.

1 Introduction

Safe multi-robot navigation in cluttered environments is a fundamental chal-
lenge in autonomous systems. Traditional approaches typically follow a two-
stage paradigm: first, a planning module computes a reference trajectory
based on perceived obstacles and map data; then, a low-level controller is
used to track the planned trajectory. While effective in simple scenarios, this
decoupling often introduces latency, limits reactivity, and fails to guarantee
safety under evolving constraints.
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Integrated Planning and Control (IPC) offers an alternative: by synthe-
sizing control inputs directly from raw sensor data using feedback control
laws, IPC eliminates the need for explicit trajectory generation. IPC frame-
works compute admissible control actions by enforcing system dynamics and
environmental constraints directly in the control loop, enabling reactive and
safe navigation without requiring full trajectory planning.

Despite these advances, most IPC formulations focus on single-agent
systems and assume isolated operation. In real-world applications, multi-
ple autonomous agents must navigate shared environments while avoiding
not only static obstacles but also each other. Independent application of
single-agent IPC in multi-agent settings often leads to interference, ineffi-
cient motion, or deadlock—particularly when agents select reference points
without accounting for others.

In this work, we extend the IPC framework to multi-agent systems using
Vehicle-to-Vehicle (V2V) communication. By sharing local constraints, ge-
ometric information, and selected reference points, agents jointly optimize
their behavior to ensure safe, coordinated motion. Our contributions are:

• We identify failure modes of decoupled single-agent IPC in static,
multi-robot scenarios due to uncoordinated reference selection.

• We formulate a joint optimization problem that incorporates both in-
dividual feasibility constraints and inter-agent separation using V2V-
shared information.

• We validate our approach in two simulated environments: one where
multiple robots compete for a shared goal in a cluttered space, and an-
other involving separate goals with spatial coordination requirements.
In both, the multi-agent IPC approach succeeds where independent
agents fail.

This study demonstrates that even in the absence of dynamic obstacles,
cooperative planning is essential for robust performance in spatially con-
strained settings. Our findings lay the groundwork for future extensions to
dynamic and learning-based environments.

2 Related Work

Conventional navigation pipelines often separate planning and control into
two stages, which are executed sequentially during runtime. To improve
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reactivity, several methods integrate local geometric information into reac-
tive planning algorithms [1, 2]. Vector field histograms [3] compute safe
steering directions based on instantaneous range data, while feedback mo-
tion planners such as artificial potential fields (APFs), navigation functions
[4], harmonic potential fields (HPFs) [5], and non-holonomic RRT* [6] help
maintain stability in the presence of disturbances by replanning from the
robot’s new position. However, these methods are prone to limitations like
local minima and oscillatory behavior, especially under complex obstacle
configurations.

To mitigate these issues, approaches like closest-gap navigation (CG) [7],
nearness-diagram (ND) [2], and smooth-nearness diagram (SND) [8] extend
the planning horizon using local sensory data. These methods prioritize
clearance and trajectory smoothness, with CG shown to outperform ND and
SND in computational efficiency and reducing oscillations [7]. A taxonomy
of such algorithms in [9] highlights that although sensor-based local planners
are essential for handling unknown workspaces, they carry inherent trade-
offs between responsiveness and formal safety guarantees.

Model Predictive Control (MPC) has emerged as a dominant tool for
local navigation, especially for robots with higher-order dynamics and on-
board computation [10]. MPC frameworks encode motion, input, and space
constraints directly into a finite-horizon optimization problem, making them
ideal for path planning [11] and tracking [12]. Variants such as Min–max
MPC [13], constraint tightening MPC [14], and Tube MPC [15] extend ro-
bustness under bounded disturbances [16, 17, 18]. However, real-time de-
ployment often requires linearization and discretization of nonlinear dynam-
ics, and tuning prediction horizons and weight matrices becomes critical to
performance [19].

Integrated planning and control frameworks aim to avoid online trajec-
tory optimization by generating control inputs directly through feedback,
making them attractive for resource-constrained systems. Sequential com-
position techniques [20] have been used to define control policies over do-
mains in the state space such that the goal of one lies in the domain of
another. While effective in known, static environments [21, 22], these pre-
synthesized control structures do not generalize well to partially known or
cluttered settings.

In summary, most existing approaches still depend on precomputed tra-
jectories or heuristic-based control computations. While sensor-based meth-
ods like CG, SND, and ND are fast and reactive, they lack formal guarantees.
MPC-based strategies offer strong guarantees but require significant onboard
resources and careful tuning. Integrated feedback-based approaches provide
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an appealing alternative by computing admissible controls without solving
online optimizations. However, these methods have largely been confined
to static, fully known environments, and their extension to online, sensing-
driven navigation remains an open challenge. This work aims to bridge that
gap by developing an integrated control structure that uses local sensing to
ensure safe, online navigation for unicycle robots, while implicitly handling
both motion constraints and the local geometry of the environment.

3 Problem Formulation

The Integrated Planning and Control (IPC) framework provides a feedback-
driven approach to safe robot navigation without relying on explicit trajec-
tory planning. In the single-agent setting, IPC uses local range measure-
ments to compute a set of admissible reference points and selects one that
moves the agent closer to its goal while remaining within safety constraints.
A stabilizing feedback controller then drives the agent toward the selected
reference point. This process is repeated iteratively, enabling safe, reactive
navigation in cluttered environments.

Formally, the robot is modeled using unicycle dynamics:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (1)

where (x, y) is the position, θ is the orientation, and (v, ω) are the linear
and angular velocity controls, respectively. Range sensor data {(dj , ϕj)}Mj=1

defines a locally sensed free space, from which a set of admissible reference
points A is computed. At each step, the reference w∗ is selected via a greedy
strategy:

w∗ = arg min
w∈A
∥w − g∥, (2)

where g is the goal position. A feedback controller ensures convergence to
w∗ within system constraints.

3.1 Multi-Agent Extension with V2V Coordination

While effective in isolation, this formulation does not account for interac-
tions between multiple agents. When several robots operate in proximity,
independently chosen references can lead to collisions, gridlock, or inefficient
trajectories—even in static environments.

To address this, we extend the IPC framework to a cooperative multi-
agent setting. Each agent runs a local IPC loop but also communicates
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with neighbors via Vehicle-to-Vehicle (V2V) links to share admissible regions
and reference selections. This enables coordinated reference selection that
enforces a minimum separation between agents.

Let G = (V, E) represent the communication graph, where each node
is an agent and edges denote communication links. For N agents, each
with local admissible set Ai and goal gi, the cooperative reference selection
problem is:

min
w1,...,wN

N∑
i=1

∥wi − gi∥ s.t. wi ∈ Ai, ∥wi − wj∥ ≥ δsafe ∀(i, j) ∈ E . (3)

This joint formulation ensures safety through both local sensing and
inter-agent coordination. By sharing only local information and constraints,
the method remains distributed and scalable while resolving key failure cases
of single-agent IPC in shared spaces.

4 Methodology

This section outlines the implementation of the proposed multi-agent IPC
framework, from local sensing and reference point selection to coordination
via V2V communication and control input synthesis.

4.1 Local Sensing and Admissible Region Computation

Each agent is equipped with a LiDAR-like range sensor that provides M
angular measurements {(dj , ϕj)}Mj=1 within a limited field of view. These
measurements define the local obstacle-free region in which the robot can
safely operate at the current time step.

The admissible set Ai for agent i is constructed by projecting forward-
safe points based on LiDAR returns and the robot’s footprint. Only those
points that maintain clearance from obstacles and satisfy local geometric
constraints are retained.

4.2 Reference Point Selection

Given the admissible set Ai and the goal gi, the standard IPC strategy
chooses a reference point that minimizes the Euclidean distance to the goal:

w∗
i = arg min

w∈Ai

∥w − gi∥. (4)

However, this greedy selection often results in reference conflicts when mul-
tiple agents operate in proximity, especially in narrow or congested spaces.
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4.3 Multi-Agent Coordination via V2V

To resolve potential conflicts, we use V2V communication to share local
information between neighboring agents. Each agent broadcasts its current
position, admissible set, and intended reference point.

A joint optimization is then performed over the network to enforce mu-
tual separation:

min
w1,...,wN

N∑
i=1

∥wi − gi∥,

s.t. wi ∈ Ai,

∥wi − wj∥ ≥ δsafe ∀(i, j) ∈ E ,

(5)

where δsafe is the minimum allowable separation between agents and E is the
set of V2V communication links.

This ensures coordinated reference point selection while keeping compu-
tation decentralized and scalable.

4.4 Control Input Computation

Once the reference point w∗
i is finalized, each agent applies a local feedback

control law to drive its state toward the reference. We use a proportional
stabilizing controller of the form:

vi = kv · ∥w∗
i − xi∥, ωi = kω · atan2(w∗

iy − yi, w∗
ix − xi)− θi, (6)

with tuned gains kv and kω. The agent proceeds toward the reference, and
the cycle repeats at the next time step.

The full navigation procedure is summarized in Algorithm 1.

6



Algorithm 1: Multi-Agent IPC Navigation Algorithm

Input: Si, gi, fs, fw, fc ; // Start, goal, control/planning

frequencies

Output: U = {(Rk
i , ψ

k
i , w

k
i )}

Initialize Ri ← Si, (vi, ωi)← (0, 0);
k ← 1, j ← 1, countway ← 0, countcontrol ← 0;
while Ri ̸= gi do

Read local range data {(dj , θj)};
if gi in line-of-sight then

Tj ← gi;
else

Identify candidate region Cj for navigation;
Tj ← midpoint of Cj ;

while Ri ̸= Tj do
countway ← 0;

wk
i ← WaypointSelection(Ri, Tj , {(dj , θj)});

Broadcast wk
i to neighbors, receive {wk

j }j∈Ni ;

Apply collision resolution via joint selection (if needed);

Transform frame: (Rk
i , ψ

k
i )← relative to wk

i ;

while Ri ̸= wk
i or countway ≤ 1

fw
and Ri ∈ L(V, V (Rk

i )) do

Compute (vi, ωi) from control law;

Append (Rk
i , ψ

k
i , w

k
i ) to U ;

while countcontrol ≤ 1
fs

do

Deploy control (vi, ωi);
countcontrol ← countcontrol +

1
fs
;

countway ← countway + countcontrol;
countcontrol ← 0;

k ← k + 1;
j ← j + 1;

5 Simulation Setup

We evaluate the proposed framework in two static environments designed
to highlight the limitations of independent IPC and the benefits of coordi-
nation.
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5.1 Sensing and Control Parameters

Each robot uses a front-facing LiDAR with 120 beams over a 180◦ field of
view and a 5-meter range. Control inputs are computed using a proportional
stabilizing controller with gains kv = 1.0 and kω = 2.0. The control loop
runs at 10 Hz, while reference planning and communication occur at 1 Hz.

5.2 Scenarios

Scenario 1: Shared Goal Navigation. Three car-like robots—Robot 1,
Robot 2, and Robot 3—start from different locations and navigate toward
a common goal. Static circular obstacles are placed to force the robots to
approach through narrow corridors. Figure 1 shows the initial configuration.
This setup reveals a common failure mode of independent IPC: when each
robot greedily selects reference points without accounting for others, they
block each other’s paths, leading to deadlocks or inefficient paths. The
scenario tests whether multi-agent IPC with coordination can resolve these
conflicts.
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Figure 1: Scenario 1: Three robots navigating toward a shared goal in a
cluttered environment. Robot 1, Robot 2, and Robot 3 are shown at their
start locations, along with static circular obstacles and a common goal (red
star).

Scenario 2: Distributed Parking Navigation. In this more struc-
tured environment, each robot is assigned a unique goal in a simulated
parking lot. Multiple static rectangular obstacles represent parked vehicles.
Figure 2 shows the environment. The layout tests how well independent
versus cooperative IPC strategies manage complex spatial interactions when
goals differ. Without coordination, agents may converge to overlapping re-
gions or take suboptimal detours. With coordination, they resolve conflicts
by sharing intent and adapting waypoints accordingly.
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Figure 2: Scenario 2: Each robot navigates to a separate parking goal while
avoiding rectangular static obstacles (gray). Robot 1, Robot 2, and Robot
3 are shown at their start locations.

5.3 Implementation

Simulations were implemented in Python using a discrete-time kinematic
simulator. In the cooperative case, robots exchange reference and pose in-
formation via a simulated V2V link, and conflicts are resolved by enforcing
a minimum separation during reference selection. We compare both strate-
gies using trajectory plots, convergence statistics, and qualitative analysis
of path efficiency and safety.

To ensure robustness, we tested variations in start positions, goal con-
figurations, and control gains across multiple runs. The results presented in
the following sections are representative of typical behavior observed under
these variations.
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5.4 Evaluation Metrics

To compare the independent IPC baseline with the cooperative V2V ap-
proach we track four quantitative metrics:

• Success Rate. Fraction of runs in which every robot reaches its goal
without any collision. A value of 1 indicates reliable, collision-free
convergence for all robots.

• Time to Goal. Total simulated time (in seconds) taken for the last
robot in the team to reach its goal. Lower values mean faster comple-
tion.

• Path Efficiency. For each robot we compute the ratio actual path
length ÷ straight-line start–goal distance and then average over all
robots. A perfectly straight trajectory yields 1; higher numbers indi-
cate detours.

• Minimum Inter-Agent Distance. The smallest Euclidean distance
recorded between any pair of robots during the run. Larger values
correspond to safer separation.

6 Results

This section reports the performance of the proposed cooperative IPC strat-
egy and the independent IPC baseline across the two simulation scenarios
introduced in Section 5. For each scenario we ran multiple trials that vary

• the initial start positions of Robot 1, Robot 2, and Robot 3,

• the corresponding goal positions,

• the proportional control gains (K1,K2,K3).

Each trial was executed twice: once with agents operating independently
and once with V2V coordination enabled. During every run, we log the four
evaluation metrics defined in Section 5.4: success rate, time to goal, path
efficiency, and minimum distance between agents.
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6.1 Qualitative Analysis: Independent IPC Failure

Figure 3 shows a representative failure case in the shared-goal scenario under
the independent IPC controller. Robots operate without knowledge of each
other’s planned motion, leading to inefficient and conflicting trajectories.

In Frame a, Robot 3 (green) selects an aggressive reference heading di-
rectly toward the goal. Robot 2 (orange) and Robot 1 (blue) begin to move
cautiously. By Frame b, Robot 3 has curved into the corridor, narrowing
available space for the other two agents. Frame c shows Robot 3 entering
the center path while Robot 2 is forced into a shallow arc and Robot 1 slows
down. Finally, in Frame d, the lack of coordination results in an effective
deadlock — Robot 3 dominates access to the goal, while Robots 1 and 2
are constrained behind it with no collision-free forward option. The trial is
marked as a failure for robot 1 under the success metric.

(a) Greedy arc by
Robot 3

(b) Corridor nar-
rowing

(c) Conflict emerg-
ing

(d) Stalling and
deadlock

Figure 3: Independent IPC (no V2V): A failure case where Robot 3’s path
blocks the shared corridor, preventing the others from reaching the goal.

6.2 Quantitative Results

Tables 1 and 2 summarize the performance of the independent IPC baseline
and the cooperative V2V variant across two scenario categories: shared-goal
navigation and distributed parking.

In the shared-goal setting (Table 1), the cooperative controller achieves
an average success rate of 80% compared to just 53% with independent IPC.
Agents also converge faster and maintain safer distances from one another.
In particular, the lowest minimum distance observed improves from 0.44m
to 0.56m with V2V, indicating effective resolution of spatial conflicts.

In the parking scenario (Table 2), V2V coordination again leads to sub-
stantial gains in both safety and convergence. Average success rate rises
from 47% to 93%, and even in cases involving narrow passages and goal
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clustering, agents are able to coordinate more effectively to avoid collisions
and deadlocks.

These results highlight the value of embedding communication and joint
planning within the IPC pipeline. A more detailed discussion of these find-
ings appears in Section 7.

Table 1: Comparison of Independent (IPC) vs Cooperative (V2V) Naviga-
tion Strategies — Explicit Scenario Parameters (Shared-Goal Navigation)

Test Case Start Positions Goal Position Gains Success Rate Time to Goal
(s)

Path
Efficiency

Min Distance

Default Configuration (1.0,1.0); (3.0,2.2);
(1.0,6.0)

(5.0,9.0) 1.00/1.50/0.30 0.67 | 1.00 25.30 | 22.50 0.78 | 0.85 0.48 | 0.65

Horizontal Spread (0.5,0.5); (9.0,0.5);
(5.0,0.5)

(5.0,9.0) 1.00/1.50/0.30 1.00 | 1.00 33.80 | 31.20 0.72 | 0.79 0.75 | 0.88

Tight Formation (1.0,1.0); (3.0,1.0);
(5.0,1.0)

(3.0,9.0) 1.00/1.50/0.30 0.33 | 0.67 45.20 | 41.50 0.58 | 0.62 0.31 | 0.42

Increased Gains (1.0,1.0); (3.0,2.2);
(1.0,6.0)

(5.0,9.0) 2.00/3.00/0.60 0.67 | 1.00 20.90 | 18.30 0.81 | 0.88 0.42 | 0.53

Linear Alignment (1.0,1.0); (3.0,1.0);
(5.0,1.0)

(3.0,9.0) 1.00/1.50/0.30 0.00 | 0.33 ∞ | 50.20 0.48 | 0.55 0.25 | 0.31

Average — — — 0.53 | 0.80 31.30 | 32.74 0.67 | 0.74 0.44 | 0.56

Table 2: Comparison of Independent (IPC) vs Cooperative (V2V) Naviga-
tion Strategies — Explicit Scenario Parameters (Distributed Parking)

Test Case Start Positions Goal Position Gains Success Rate Time to Goal
(s)

Path
Efficiency

Min Distance

Default Parking (1.5,1.0); (3.0,2.0);
(4.5,1.0)

(8.5,9.0);
(9.0,8.0);
(10.0,8.5)

1.00/1.50/0.30 0.67 | 1.00 50.20 | 48.50 0.65 | 0.72 0.42 | 0.58

Wide Start Positions (1.0,1.0); (5.0,1.0);
(9.0,1.0)

(8.5,9.0);
(9.0,8.0);
(10.0,8.5)

1.00/1.50/0.30 0.67 | 1.00 52.80 | 51.30 0.62 | 0.68 0.48 | 0.64

Narrow Passages (1.5,1.0); (3.0,2.0);
(4.5,1.0)

(8.5,9.0);
(9.0,8.0);
(10.0,8.5)

1.00/1.50/0.30 0.33 | 0.67 ∞ | 58.60 0.55 | 0.62 0.34 | 0.46

High Control Gains (1.5,1.0); (3.0,2.0);
(4.5,1.0)

(8.5,9.0);
(9.0,8.0);
(10.0,8.5)

2.00/3.00/0.60 0.33 | 1.00 45.20 | 42.80 0.60 | 0.68 0.32 | 0.52

Clustered Goals (1.5,1.0); (3.0,2.0);
(4.5,1.0)

(9.0,9.0);
(9.5,8.5);
(8.5,8.5)

1.00/1.50/0.30 0.33 | 1.00 ∞ | 52.50 0.58 | 0.65 0.28 | 0.50

Average — — — 0.47 | 0.93 49.40 | 50.74 0.60 | 0.67 0.37 | 0.54

7 Discussion

Figure 4 and Figure 5 present normalized comparisons of the four evaluation
metrics—success rate, time to goal, path efficiency, and minimum inter-
agent distance—for both independent IPC and cooperative IPC with V2V
communication.
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In both scenarios, the cooperative V2V approach consistently outper-
forms its independent counterpart across all metrics. The improvement in
success rate is particularly pronounced in the parking scenario, where the
independent baseline succeeds in less than half of the runs. This aligns with
the nature of the task: parking scenarios often involve tighter spaces, where
early coordination and intent sharing become critical to avoiding deadlocks
and unsafe proximity.

Across both settings, the cooperative controller not only improves con-
vergence but also enhances safety. The minimum inter-agent distance re-
mains consistently higher in V2V runs, reflecting better spatial awareness
and reduced likelihood of blocking or near-collision events. This is most ev-
ident in tightly packed start configurations and scenarios with intersecting
goals or constrained corridors.

The normalized path efficiency values also favor V2V coordination. Even
in successful independent IPC runs, path efficiency often suffers due to un-
necessary detours or hesitation caused by local deadlocks. In contrast, V2V
allows agents to optimize jointly, reducing wasted motion. The increase
in time is also shown to be marginal, and can be attributed to simulation
numerical errors.

Overall, these trends confirm the benefit of integrating coordination at
the planning level. While independent IPC can perform well in isolated or
spacious environments, its limitations become clear under spatial coupling.
V2V-based cooperative IPC extends the robustness of the framework to
more challenging, high-interaction settings.
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Figure 4: Normalized metric comparison for shared-goal navigation. V2V
consistently outperforms IPC across all metrics.

Figure 5: Normalized metric comparison for distributed parking. Largest
gains are seen in success rate and minimum distance.

8 Future Work

Several extensions can further strengthen and generalize the findings of this
work:
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• High-Fidelity Simulation. Future experiments could be run in
higher-fidelity simulators that more accurately model sensor noise, ve-
hicle dynamics, and communication delay, bringing the system closer
to deployment-readiness.

• V2V Communication Protocols. The current V2V implementa-
tion assumes perfect and instantaneous information exchange. Explor-
ing realistic V2V protocols, including bandwidth constraints, latency,
and dropout, would make the results more robust and applicable to
real-world deployments.

• Traffic-Like Constraints. Adding structured road geometry, lane
constraints, and right-of-way rules would allow the framework to better
emulate cooperative driving in real traffic environments.

• Large-Scale Scalability. Extending the system to larger robot teams
would help assess how coordination complexity and communication
overhead scale with group size, and whether decentralized coordination
heuristics are needed.

• Mixed Environments. Finally, future work could study environ-
ments with heterogeneous agents, including both coordinated and un-
coordinated vehicles, or a mix of static and dynamic obstacles with
unpredictable behavior.

9 Conclusion

This work extended the Integrated Planning and Control (IPC) framework
to support multi-agent coordination through vehicle-to-vehicle (V2V) com-
munication. We demonstrated, through simulation, that augmenting IPC
with joint reference planning and invariant region sharing significantly im-
proves task success rate, path efficiency, and inter-agent safety.

Two representative navigation settings—shared-goal navigation and dis-
tributed parking—were used to evaluate the approach. In both cases, coop-
erative IPC consistently outperformed the independent baseline, especially
in tightly constrained or high-interaction environments.

These results highlight the importance of integrated coordination at the
planning stage. By embedding V2V into IPC, agents not only avoid collisions
but also negotiate complex spatial interactions more effectively, leading to
robust and scalable multi-robot behavior.
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