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Abstract

Reinforcement Learning (RL) has demonstrated strong performance
across diverse domains, yet its generalization ability remains limited, par-
ticularly in the presence of distributional shifts. This paper investigates
whether integrating causal inductive biases into RL can improve robust-
ness and transferability across related tasks. We conduct a comparative
study using model-free baselines and causal RL agents, including variants
of the CausalCF algorithm that leverage interventions and counterfac-
tual reasoning. All agents are trained on a robotic picking task in the
CausalWorld environment and evaluated under a suite of domain-shift
protocols, as well as on a distinct pushing task to assess representation
transfer. Results show that causal agents outperform non-causal baselines
on several out-of-distribution evaluations and exhibit promising signs of
transferability. However, all methods degrade under severe domain pertur-
bations. These findings provide empirical support for the hypothesis that
causal structure can enhance generalization in RL, while also highlight-
ing current limitations and motivating future research in scalable causal
representation learning.

1 Introduction

Reinforcement Learning (RL) offers a principled approach for sequential decision-
making through interaction with an environment. The learning problem is
typically framed as a Markov Decision Process (MDP), defined by the tuple
(S, A, R, P,7), where S is the state space, A the action space, R the reward
function, P the transition dynamics, and  the discount factor. The agent seeks
to learn a policy me(as | s¢) that maximizes expected cumulative reward.
Although modern RL methods have shown success across a variety of do-
mains, their generalization ability remains limited. In particular, many algo-
rithms overfit to statistical regularities in the training environment, leading to



poor performance under distributional shift or in novel settings. This problem
is especially evident in real-world applications such as robotics, where environ-
ments may vary in subtle but important ways.

One promising approach to improve generalization is to incorporate causal
inductive biases into RL. By leveraging causal structures—such as intervention
and counterfactual reasoning—agents may learn representations that are more
invariant across tasks and environments. Recent work in Causal Reinforcement
Learning (CRL) aims to formalize and implement such ideas, though the prac-
tical benefits remain challenging to validate empirically.

In this project, we explore the extent to which causal representations learned
by a causal RL agent exhibit invariance across related tasks. We train CausalCF,
a causal RL algorithm that integrates elements of the Pearl Causal Hierarchy,
on a robotic picking task in the CausalWorld environment. We then evaluate
the learned policy components on a distinct pushing task, without additional
training. Our goal is to examine whether the model’s learned causal structure
is transferable and whether any signs of generalization emerge.

While our work does not aim to definitively quantify causal RL’s advantages
over non-causal baselines, it provides empirical evidence and visualizations that
support the hypothesis of causal invariance. This preliminary investigation con-
tributes to the broader understanding of how causal reasoning may aid RL
agents in performing robustly across structurally similar but dynamically dif-
ferent tasks. The remainder of this document is organized as follows: Section 2
provides background on causal inference, inductive bias, and related literature
in RL. Section 3 covers our primary objectives and scope of this project. Sec-
tion 4 describes the experimental setup, including the environment, models, and
training configuration. Section 5 presents our empirical findings and visualiza-
tions. Section 6 discusses key observations and limitations, and concludes with
a summary and potential directions for future work.

2 Literature Review

Causal inference enhances reinforcement learning (RL) by addressing key chal-
lenges in sample efficiency, generalization, and interpretability [1]. It provides a
framework combining data with structural environmental knowledge, enabling
counterfactual reasoning [2], which is crucial for RL agents operating in uncer-
tain, interactive environments

Causal RL (CRL) formalizes the integration of causal knowledge into RL
systems through the tuple (M, G), where M is an RL model (e.g., MDP) and
G encodes environmental causal structure [3]. Two distinct approaches emerge:
(1) utilizing predefined causal information, or (2) learning causal relationships
from data. These methods capture how actions influence states and rewards
through causal dependencies. The underlying structural equations establish
causal links between variables, with the Causal Markov Assumption enabling
tractable inference by enforcing conditional independence between variables and
their non-descendants given parents [1]. This principled abstraction facilitates



causal discovery in complex environments.

Furthermore, causal models have an equivalent causal directed acyclic graph
(DAG) representation G = {V, £}, where the tuple elements represent the set of
variables and their causal relationships, respectively. The graph is constructed
using three building blocks: the chain, fork, and collider. Under this structure,
a form of product decomposition utilizing causal relationships can be employed,
known as causal factorization, to model complex joint probability distributions
P(V) = [T1, P(Vilpai(V2) [3)

Research has demonstrated the effectiveness of causal RL approaches in var-
ious domains. Examples include Barenhoim’s unified CRL framework, which
leverages the structural invariances within causal inference and sample efficiency
of reinforcement learning to produce a new, robust system for RL. This frame-
work has been applied to research areas such as decision-making, learning, and
intelligence, as well as applied domains, including robotics and healthcare [4].

These causal mechanisms take on deeper significance when intentionally de-
ployed as inductive biases - a concept formally defined as ”imposing constraints
on relationships and interactions among entities in a learning process” [5]. The
goal of implementing inductive biases is to prioritize certain solutions over an-
other, through which one can discover a desirable generalized solution or im-
prove the overall search without significantly decreasing in performance. In rein-
forcement learning (RL), these biases manifest as structural or domain-specific
constraints that guide the agent’s learning process while introducing potential
trade-offs between performance and model complexity.

In Reinforcement Learning (RL), inductive bias often takes the form of struc-
tural or domain-related constraints that guide the agent’s learning process. One
early and influential example is reward shaping, where an auxiliary function ®(s)
is introduced to modify the original reward R [6]. Formally, the shaped reward
R’ is given by

R (sty1,a:) = R(strr,a8) + 7 @(se01) — O(s1), (1)

where v € [0,1] is the discount factor. A well-designed shaping function can
bias exploration toward promising regions of the state space while preserving
policy optimality. Another common bias appears in hierarchical RL [7], where
tasks are decomposed into subtasks, each with a specialized policy {7y, m2,...}.
These policies can be sequenced to solve complex problems more efficiently. Sim-
ilarly, physics-based biases improve control in continuous domains by embedding
known kinematic or dynamic constraints into the agent’s model [8,9].

A growing area of interest is graph-based inductive biases, often introduced
via Graph Neural Networks (GNNs) [5]. In multi-agent or physically struc-
tured environments, representing entities as nodes and interactions as edges can
significantly boost sample efficiency and improve the agent’s ability to handle
complex relationships [10,11]. Finally, causal inductive biases have gained trac-
tion for enhancing out-of-distribution generalization and interpretability [12,13].
By leveraging principles such as do-calculus or counterfactual reasoning, agents
can move beyond correlation-based policies and instead learn true cause-effect
mechanisms in their environment.



Overall, these diverse strategies demonstrate that carefully chosen inductive
biases can enhance sample efficiency, promote better exploration, and improve
policy robustness—often at the cost of potential model complexity or perfor-
mance constraints if the assumed bias is not well matched to the environment.

Our initial proposal to ”inject causal bias” was refined through literature
analysis and feedback from Prof. Xue. Recognizing that all RL methods (es-
pecially causal approaches) are inherently biased per Mitchell’s definition, ”any
basis for choosing one generalization over another” | we have shifted our focus to
a comparative analysis of causal and non-causal reinforcement learning methods
using the Causal World Dataset rather than attempting to create an unbiased
causal reinforcement learning method. This new direction allows us to explore
the strengths and limitations of different approaches in various scenarios, pro-
viding a more nuanced understanding of when and how causal methods can
outperform traditional reinforcement learning techniques.

3 Problem Statement & Objectives

3.1 Problem Statement

Reinforcement learning models frequently fail to generalize due to their depen-
dence on correlational rather than causal relationships, leading to poor out-of-
distribution performance in real-world applications. Current approaches that
expand training data or adapt domains remain fundamentally limited by their
lack of causal reasoning. Our initial research direction sought to enhance RL
generalization by integrating causal inductive biases through structural causal
models (SCMs) and counterfactual reasoning. This framework aimed to develop
causal agents capable of distinguishing true environmental mechanisms from
spurious correlations, thereby improving out-of-distribution robustness and de-
cision reliability.

However, upon further investigation and valuable feedback from Professor
Xue, we have revised our problem definition to address a more fundamental
question in the field of causal reinforcement learning. Given the inherent bias in
any causal RL method, as highlighted by Mitchell’s (1980) definition of bias as
“any basis for choosing one generalization over another, other than strict consis-
tency with the observed training instances,” we aim to conduct a comparative
analysis of causal and non-causal RL methods using the Causal World Dataset.

We seek to understand the specific scenarios and conditions under which
causal RL methods may outperform traditional RL approaches, despite their
inherent biases. Our research will investigate the trade-offs between different
types of biases present in causal and non-causal RL methods, focusing on their
impact on sample efficiency, generalization, and robustness to domain shifts.
We aim to identify which causal methods are best suited for particular ap-
plications and explore the role of hyperparameters in causal RL performance.
Through systematic experimentation, we will test the hypothesis that learned
causal structures remain invariant across different environments, potentially of-



fering advantages in transfer learning and out-of-distribution generalization.

This revised problem definition shifts our focus from developing a novel
causal RL method to a more comprehensive evaluation of existing approaches.
By doing so, we aim to contribute valuable insights to the ongoing discourse on
the role of causality in reinforcement learning and its potential to enhance the
capabilities of Al systems in complex, real-world scenarios.

3.2 Objectives

The primary aim of this project is to investigate the generalization capabili-
ties of causal RL methods in comparison to traditional, non-causal approaches.
Building on recent advancements in causal inference and inductive bias in ma-
chine learning, our study focuses on evaluating how well these methods perform
in structurally diverse and distributionally shifted environments. Specifically,
we address the following objectives:

1. Conduct a systematic comparison of causal and non-causal RL
methods using the CausalWorld dataset.

We evaluate several variants of reinforcement learning agents—including
traditional model-free algorithms like Soft Actor-Critic (SAC), as well as
causal agents based on the CausalCF framework. Agents are trained on a
robotic manipulation task within the CausalWorld environment and eval-
uated on a range of benchmark protocols designed to introduce controlled
distributional shifts. We assess performance using fractional success, em-
phasizing scenarios where causal methods demonstrate clear advantages
over traditional baselines, with particular attention to environment com-
plexity and variable interactions.

2. Investigate the invariance and transferability of learned causal
structures. A central hypothesis in causal RL is that learned causal rep-
resentations are more invariant and thus transferable across tasks. To eval-
uate this, we examine the extent to which causal representations learned
during training on the picking task can be reused for a distinct but struc-
turally related task (pushing). We compare the performance of trans-
ferred causal agents with those trained directly on the new task, analyzing
whether causal structure facilitates improved generalization under domain
shift.

These objectives aim to advance our understanding of when and how causal
reasoning can support more robust and generalizable reinforcement learning,
particularly in robotic settings where real-world variability poses significant
challenges.



4 Experimental Setup

This section outlines the methodology used to evaluate causal and non-causal
reinforcement learning agents in a robotic manipulation environment. All ex-
periments were conducted in the CausalWorld simulator, a benchmark suite de-
signed to study causal reasoning and generalization in goal-conditioned robotic
tasks. Our study primarily focused on training agents on a picking task and
evaluating their performance on a related but distinct pushing task. We rely
on the official implementation of the CausalCF algorithm, which incorporates
counterfactual reasoning into the RL pipeline, to examine how causal represen-
tations influence transfer and robustness.

We also attempted to run experiments on the stacking task, which is among
the more complex manipulation scenarios available in the CausalWorld environ-
ment. However, we encountered an observation space mismatch error during
initialization, which we were ultimately unable to resolve. As a result, no train-
ing or evaluation was conducted for stacking, and we leave this task as part of
future scope for more comprehensive multi-task evaluation.

The following subsections detail the codebase used, task design, evaluation
protocols, and training configurations.

4.1 Codebase and Environment

Our implementation is based entirely on the official GitHub repository provided
by the authors of CausalCF'. This repository includes training scripts, model
definitions, and environment wrappers for the CausalWorld simulator. We pre-
served the architecture and training protocol as closely as possible to ensure
reproducibility and maintain consistency with the original design.

CausalWorld is a physics-based robotic manipulation environment built on
PyBullet, simulating a three-fingered robotic hand (TriFinger) tasked with ar-
ranging colored blocks into target configurations. It offers structured observa-
tions, goal-conditioned rewards, and multiple control modes. For all experi-
ments, we used structured observations and controlled the robot via joint posi-
tions, as recommended in the original CausalCF paper.

Due to the complexity of the CausalCF pipeline, including its counterfactual
training phase, we ran all experiments on Purdue’s high-performance computing
clusters (Gilbreth and Anvil), which provided necessary GPU resources. Envi-
ronment setup was managed through Conda and PyTorch, with minor modifi-
cations made only to logging and evaluation routines for our analysis.

4.2 Task and Evaluation Protocol

The CausalWorld environment includes a built-in evaluation pipeline compris-
ing 12 protocols (P0-P11), each of which systematically alters one or more
environment variables. These variables include block pose, block mass, block

Thttps://github.com/Tom1042roboai/CausalCF
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size, goal pose, and floor friction. The purpose of these protocols is to test the
generalization ability of RL agents across increasing levels of distributional shift.

Fach protocol is associated with either Space A or Space B, which define
different sampling ranges for the affected variables. Space A represents the
training distribution, while Space B introduces out-of-distribution variation.
All our models were trained using samples from Space A, making protocols
involving Space B especially useful for measuring robustness.

Protocol | Space | Variables Modified
PO A None
P1 A Block mass
P2 B Block mass
P3 A Block size
P4 A Block pose
P5 A Goal pose
P6 B Block pose, Goal pose, Block mass
p7 A Block pose, Goal pose, Block mass
P8 B Block pose, Goal pose, Block mass
P9 B Block pose, Goal pose, Block mass, Floor friction
P10 A All variables
P11 B All variables

Table 1: Evaluation protocols from CausalWorld as defined in the CausalCF
paper [14].

CausalWorld utilizes a success/reward metric called fractional success which
is defined as “the fractional volumetric overlap of the blocks with the goal shape,
which ranges between 0 (no overlap) and 1 (complete overlap)” [14]. This is
calculated as follows

i, intersection(O_vol;, G_vol;)
> Govol;

(2)

fractional success =

Where n represents the number of objects, i represents the i** object, O_vol;
is the current location of the i*" object, and G_vol; is the goal location for the
same object. As stated above, a higher fractional success represents more ideal
performance by the model. We utilize this metric as a means of comparing the
model performance.

Each configuration is evaluated using the fractional success metric, which
essentially measures the overlap between the goal configuration and the achieved
block configuration. A value of 1 indicates perfect alignment, while 0 indicates
no overlap. We use three variants of this metric to capture different aspects of
agent performance:

e Last Fractional Success: The success achieved at the final timestep of
the evaluation trajectory.



e Full Integrated Fractional Success: The average success accumulated
across all timesteps.

e Last Integrated Fractional Success: A cumulative score weighted to-
ward the final portion of the trajectory.

4.3 Training Details and Hyperparameters

For our baseline models, we have trained a Soft-Actor Critic (SAC) model using
the following hyperparameters.

Parameter Value
~y 0.95

T 1x1073

ent_coef 1x1073
target_entropy auto

learning rate 1x10*

buffer_size 1000000
learning starts 100
batch_size 256

Table 2: Parameter settings for

SAC
Parameter Value
Total time steps 7000000
Training time ~ 30 hours
Episode length 840
Number of episodes 777
Skipframe 3
Space A
Checkpoint frequency 50000

Table 3: Training parameters used for
all models

When choosing our hyperparameter settings for SAC models, we matched
the hyperparameter settings used in [?] as they have been shown to be effective
in similar reinforcement learning tasks within CausalWorld. These settings pro-
vided a strong baseline for our experiments and allowed us to focus model eval-
uation. Similarly, when training the CausalCF models, we matched the settings
used in [14] since they have demonstrated strong performance in comparable
environments and tasks. Given the resource constraints we faced, particularly
limited GPU access, we were unable to perform an extensive hyperparame-
ter tuning process of our own. By adopting the hyperparameter settings from
these prior works, we leveraged their proven effectiveness to ensure that our



models could perform optimally without the need for additional computational
resources.

Given our models were all trained on the picking task, we initially assess
their performance on picking to determine how well the model training process
is working. Subsequently, to answer our question of model generalization using
causal information, we transfer the learned causal representation of the picking
and evaluate on the pushing task.

The models we evaluate span the three layers of the Pearl Causal Hierarchy,
allowing us to distinguish the benefit of incorporating each additional layer

1. Layer 1 (Association): Our baseline SAC model

2. Layer 2 (Intervention): The Intervene model which incorporates in-
terventions into the SAC baseline model

3. Layer 3 (Counterfactuals):

(a) The Counterfactual + Intervene model, which utilizes both coun-
terfactual and intervention information atop the SAC baseline, but
operates on a static causal representation without performing Coun-
terfactual training

(b) The CausalCF model, which also utilizes both counterfactual and
intervention information, and alternates between learning the causal
representation and agent training

Finally, the TransferCausalRepIntervene model which utilizes interventions
and the causal representation learned for the picking task is evaluated on the
pushing task. This is compared to the pushing task trained intervention model
to gauge how well the learned causal representation transfers to adjacent tasks.

5 Results

We evaluate four variants of Soft Actor-Critic (SAC) agents on a suite of 12
robotic manipulation tasks (PO-P11) from the CausalWorld benchmark. The
focus of this evaluation is to understand how the use of causal representations,
counterfactual reasoning, and intervention-based training affects the agent’s
generalization performance.

The four configurations evaluated are:

1. No Intervention SAC: Standard model-free SAC agent trained on picking,
with no causal reasoning.

2. CausalCF Iterative: SAC trained on picking using the causal model
without explicit interventions.

3. CausalCF + Intervene: SAC trained on the picking task using both
interventions and counterfactual updates.



4. Transfer-CausalRep: Agent trained on picking with causal represen-
tation, then fine-tuned on the pushing task.

In the sections that follow, we provide a detailed breakdown of each config-
uration, presenting bar plots and radar plots for all three success variants and
interpreting the patterns observed in the context of structural generalization
and causal transferability.

5.1 No Intervention SAC (Picking Task)

This configuration represents a standard model-free SAC agent trained on the
picking task without any causal representation, counterfactuals, or interven-
tions. It serves as a baseline to assess the extent to which causal structure
contributes to generalization performance.
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Figure 1: No Intervention SAC (Picking): Bar plots showing full integrated,
last, and last integrated fractional success.
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Figure 2: No Intervention SAC (Picking): Radar plots corresponding to the
same success variants.

As expected, the model performs very well on the in-distribution task PO,
with near-perfect success. It also shows competence on low-variance tasks like
P1 (mass variation) and P3 (block size variation). However, the absence of any
structural prior leads to steep performance degradation on even moderate task
perturbations. Performance is particularly poor on protocols involving pose and
friction shifts (P5-P9), and nearly zero in the complex multi-variable settings
P10-P11.
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The radar plots show this trend clearly — the model exhibits a narrow band
of high performance centered on familiar conditions, but is unable to extend
its learning to scenarios with overlapping changes or latent causal dependen-
cies. This illustrates the inherent limitations of model-free RL agents when
generalization is not scaffolded by inductive structure or causal reasoning.

5.2 CausalCF Iterative (Picking Task)

This variant of the causal model does not use explicit interventions or coun-
terfactuals, relying instead on causal representation learning through iterative
training. The agent is trained and evaluated on the picking task.
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Figure 3: CausalCF Iterative (Picking): Bar plots showing full integrated, last,
and last integrated fractional success.
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Figure 4: CausalCF Iterative (Picking): Radar plots corresponding to the same
success variants.

Compared to the full CausalCF model, this variant shows relatively stable
performance on the simpler tasks (P0-P2) and some mid-complexity settings
(P3-P5). However, the absence of interventions appears to limit its robustness
in generalizing to more complex variations. Notably, success rates in P6 and
beyond are consistently lower than in the previous configuration.

This highlights the potential benefits of explicit intervention data in reinforc-
ing structural understanding. While the causal representation alone does offer
improvements over purely reactive baselines, it is less effective in environments
where structural changes require active disentanglement of variables.
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5.3 CausalCF + Intervene (Picking Task)

This configuration represents the full CausalCF pipeline with both counterfac-
tual reasoning and interventions. The model is trained solely on the picking
task and evaluated across all 12 benchmark protocols.
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Figure 5: CausalCF + Intervene (Picking): Bar plots showing full integrated,
last, and last integrated fractional success.
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Figure 6: CausalCF + Intervene (Picking): Radar plots corresponding to the
same success variants.

The bar plots indicate high performance on in-distribution protocols (P0-P1)
with fractional success close to 1.0. Performance remains strong on moderate-
shift tasks such as P3 (block size variation) and P5 (goal pose change), suggest-
ing the model is able to generalize across modest structural changes. However,
a significant drop is observed in out-of-distribution protocols (P6-P11) com-
pared to PO-P5, especially those involving combinations of variation in mass,
pose, and friction. The radar plots reinforce this: while performance is evenly
distributed across lower-index protocols, success is fragmented and inconsistent
on the more complex ones.

This result supports the hypothesis that counterfactual and interventional
training encourages the learning of more robust, transferable representations
within related domains. However, it also highlights the limits of this approach
when faced with more severe distributional shifts that the causal model was not
trained to explicitly capture.
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5.4 Transfer-CausalRep (Pick — Push)

This configuration evaluates the model’s ability to transfer causal representa-
tions learned from the picking task to a different but related task: pushing.
The policy is fine-tuned on the pushing task while reusing the causal modules
learned during the initial training.

full |ntegrated fractlonal success last _fractional_success Iast |ntegrated fractional_succes:
T
- Transfer SAC PickPush_Causal

- Transfer SACfPlckPush Causal - “Transfer - SAC_PickPush_Causal a
o o n o= n o o n
2a a2 2a 8 2 & 2

Figure 7: Transfer-CausalRep (Pick — Push): Bar plots showing full integrated,
last, and last integrated fractional success.
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Figure 8: Transfer-CausalRep (Pick — Push): Radar plots corresponding to
the same success variants.

The results from this configuration demonstrate promising signs of trans-
ferability. Although the model was originally trained on a different task,
achieves competitive success rates on several pushing protocols—particularly
those with minimal frictional and pose changes (P1-P5). This indicates that
the causal modules learned on the picking task are not only reusable but provide
a structural prior that supports learning in related environments.

Compared to the SAC baseline and even the purely picking-focused causal
models, Transfer-CausalRep achieves better performance on higher-index pro-
tocols such as P6-P9. This highlights the benefit of transferring causal ab-
stractions, especially in environments where relational or structural knowledge
is more important than raw low-level similarity.

However, performance on the most complex protocols (P10 and P11) remains
low. This aligns with the broader trend observed in previous models, indicat-
ing that even transferred causal representations may struggle when faced with
multiple simultaneous variations that deviate heavily from the source training
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distribution.

Overall, this configuration provides empirical support for the hypothesis that
causal representations are partially transferable across related robotic tasks,
especially when task dynamics share structural elements.

6 Discussion & Conclusion

This study explored the potential of causal representations to enhance general-
ization in reinforcement learning through a comparative analysis of causal and
non-causal agents in the CausalWorld robotic manipulation environment. Our
investigation focused on evaluating whether causal inductive biases, informed
by elements of the Pearl Causal Hierarchy, enable reinforcement learning agents
to generalize across task variants and transfer knowledge between structurally
related tasks.

Empirical results demonstrate that causal models—particularly those incor-
porating both intervention and counterfactual reasoning—consistently outper-
form standard model-free baselines in scenarios involving distributional shifts.
Notably, the full CausalCF model exhibited superior robustness across evalu-
ation protocols with moderate environment perturbations. Furthermore, our
transfer learning experiments suggest that causal representations learned on
one task (e.g., picking) retain partial utility when adapted to related tasks (e.g.,
pushing), validating the hypothesis that structural knowledge contributes to
policy reuse and generalization.

However, the study also revealed limitations. All models, including those
leveraging causal reasoning, struggled under extreme domain randomization
(e.g., P10-P11), highlighting that current causal RL approaches may not fully
capture or adapt to complex multi-factor distributional shifts. Additionally,
our inability to evaluate on the stacking task limits the breadth of conclusions
drawn across manipulation complexities.

In summary, our findings support the promise of causal reinforcement learn-
ing as a means to improve generalization and transfer in robotic agents. Future
work should expand this investigation to include more diverse tasks, explore
adaptive causal discovery during transfer, and evaluate causal RL under richer
forms of environment shift. Such directions will help determine the scalability
and practicality of causal inductive biases in real-world autonomous systems.
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