
Mildly Conservative Q-Learning in Offline
Reinforcement Learning for Grid World Navigation

Renhong Zhang, Ruixiang Wang, Udit Ekansh
Purdue University, West Lafayette

Abstract—Offline reinforcement learning (RL) enables policy
training using pre-collected datasets, minimizing online explo-
ration. This project evaluated offline RL algorithms for grid-
world navigation, with a custom dataset generated using the
A* path-planning algorithm on a 2D occupancy grid derived
from a realistic environment map created in the Gazebo Simu-
lation Environment using TurtleBot3. The Mildly Conservative
Q-Learning (MCQ) algorithm and other methods, including
Behavior Cloning (BC), Advantage-Weighted Regression (AWR),
Batch-Constrained Q-Learning (BCQL), and Conservative Q-
Learning (CQL), were implemented and compared. Results
showed that MCQ and CQL failed to create policies that
effectively guided the robot to goal, achieving 0% success rates
despite hyperparameter tuning using Optuna. BC achieved a 79%
success rate, which improved to 94% with tuning, while AWR
reached 88%. Initial results with BCQL showed promise with
a 52% success rate, but its hyperparameters could not be fully
tuned due to time constraints.In addition, Twin Delayed Deep
Deterministic Policy Gradient + Behavior Cloning (TD3+BC) was
tested in the PointMaze environment, revealing significant reward
degradation when faced with out-of-distribution (OOD) actions.
These results highlight the challenges of offline RL in navigation
tasks and emphasize the need for robust algorithms and effective
hyperparameter tuning. Future work includes validating policies
on TurtleBot3 in Gazebo and addressing out-of-distribution
scenarios.

Index Terms—Q-Learning, Behavior Cloning, Path Planning,
2D occupancy Grid

I. INTRODUCTION

One of the key challenges in Offline Reiforcement Learning
is addressing out-of-distribution (OOD) actions—actions that
fall outside the distribution of the training dataset. Algorithms
that naively maximize rewards in such settings risk poor
generalization or catastrophic failures. To mitigate this, con-
servative algorithms such as Mildly Conservative Q-Learning
(MCQ) and Conservative Q-Learning (CQL) have been pro-
posed, which aim to penalize OOD actions while still learning
effective policies. However, these methods remain challenging
to implement and tune, particularly in grid-world navigation
tasks where precise movement and path optimality are critical.

A. Motivation

The motivation of this project can be summarized below:
• Bridging the gap between simulation and reality:

Numerous studies focus on simulated environments; how-
ever, there is a notable gap in the literature that demon-
strates successful applications of offline RL on actual
robotic platforms. Through this project, we aim to bridge

this gap and explore the limitations of offline RL in
practice.

• Addressing real-world challenges: Implementing offline
learning methods like MCQ on physical robots presents
several challenges, such as noisy sensor data, limited data
availability, distribution shift, and computational limits.
Addressing these challenges in a controlled, yet realistic,
setting will establish a foundation for future developments
in robot learning.

B. Objective

The primary objectives of this project were:
1) To reimplement the Mildly Conservative Q-Learning

(MCQ) algorithm and compare its performance with other
offline RL algorithms in a simplified grid-world derived
from a Gazebo map.

2) To validate the offline learning results on TurtleBot3
within the Gazebo simulation environment.

MCQ was successfully implemented but did not perform
as expected, potentially due to various factors that will be
discussed in later sections. Alongside MCQ, we successfully
trained and evaluated the performance of other offline RL
algorithms, including Behavior Cloning (BC), Advantage-
Weighted Regression (AWR), Batch-Constrained Q-Learning
(BCQL), and Conservative Q-Learning (CQL). We also ex-
tended our exploration by evaluating TD3+BC in a PointMaze
environment, analyzing its behavior under out-of-distribution
(OOD) scenarios.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on offline RL and its chal-
lenges. Section III details the methodology, including dataset
generation, algorithm implementation, and evaluation metrics.
Section IV presents the environmeent setup to run our
experiments.Section V presents the results and analysis, dis-
cussing the performance of each algorithm. Finally, Section VI
concludes the paper and outlines future work.

II. RELATED WORK

• Mildly Conservative Q-Learning for Offline Rein-
forcement Learning: [4]
Mildly Conservative Q-Learning (MCQ) introduces the
Mildly Conservative Bellman (MCB) operator to balance
conservatism and generalization in offline RL. By as-
signing pseudo-target values to out-of-distribution (OOD)
actions, MCQ prevents overestimation while enabling
effective learning.

MCB Operator: The MCB operator is defined as:

TMCBQ(s, a) =

{
TQ(s, a), if µ(a|s) > 0,

maxa′∈Support(µ) Q(s, a′)− δ, else.

Where:
– T is the Bellman backup operator.
– µ(a|s) is the behavior policy.
– δ > 0 introduces mild pessimism for OOD actions.
Key Properties:
– Convergence: The MCB operator is a γ-contraction,

ensuring convergence to a unique fixed point.
– Performance Guarantee: The policy induced by the

MCB operator satisfies:

Qµ ≤ QMCB ≤ Qµ∗ ,

where Qµ is the behavior policy’s value function and
Qµ∗ is the optimal policy’s value function.

– Pessimism Control: Mild pessimism allows OOD
actions to generalize better compared to overly con-
servative approaches like CQL.

Practical Implementation: The MCB operator is inte-
grated with Soft Actor-Critic (SAC) using a Conditional
Variational Autoencoder (CVAE) to model the behavior
policy. The critic loss includes both in-distribution and
OOD updates:

Lcritic = λE[(Q(s, a)−y)2]+(1−λ)E[(Q(s, aOOD)−y′)2],

where λ balances in-distribution and OOD training.
Relevance to Project Evaluating MCQ and comparing it
to other baseline Offline RL algorithms was the primary
objective of this project.

• A Framework for Behavior Cloning: [2] Behavioral
Cloning (BC) is a supervised learning technique to repli-
cate the behavior of an expert by mapping states to
actions using recorded demonstrations. The approach is
suitable for scenarios where access to expert policies or
actions is available, but interaction with the environment
is limited.
BC Objective: The BC objective minimizes the differ-
ence between the expert’s actions a∗ and the predicted
actions â for given states s. The loss function is defined
as:

L(π) = E(s,a∗)∼D
[
∥π(s)− a∗∥2

]
,

where:
– π(s) is the learned policy.
– a∗ are the expert actions from the dataset D.
Key Properties:
– Simplicity: Requires only supervised learning on state-

action pairs, with no additional interaction with the
environment.

– Limitations: BC is prone to compounding errors due
to distributional shift when the learned policy deviates
from the expert’s trajectory.

Implementation: BC typically uses deep neural networks
to model the policy π(s), trained using supervised learn-
ing techniques (e.g., gradient descent) on the provided
dataset of expert demonstrations.
Experimental Results: BC performs well in structured
environments with dense expert data but struggles in
scenarios requiring significant generalization beyond the
dataset.
Relevance to Project: BC was implemented to establish
a baseline to compare MCQ and other algorithms to.

• ‘A Minimalist Approach to Offline Reinforcement
Learning’ [6]: Twin Delayed Deep Deterministic Policy
Gradient + Behavior Cloning is a reinforcement learning
algorithm designed to improve sample efficiency and sta-
bility in offline reinforcement learning settings. Building
on the foundation of TD3, which mitigates overestimation
bias in deterministic policy gradients through techniques
like clipped double Q-learning and delayed policy up-
dates, TD3+BC introduces an additional behavior cloning
component to leverage static offline datasets effectively.
This augmentation helps the policy align closely with the
observed data distribution, enabling robust learning from
limited or non-interactive datasets. For out-of-distribution
(OOD) scenarios, we expect this algorithm to be less
effective compare with MCQ, for it has behavior cloning
term which might not learned from an expert. In this
literature, the author discussed TD3+BC algorithm as
follow. The policy is generated according to the following
equation:

π = argmax
π

E(s,a)∼D
[
λQ(s, π(s))− (π(s)− a)2

]
(1)

where D is the dataset, λ is a scaling parameter, and Q is
the estimated Q-function. Observe that a Mean Squared
Error (MSE) behavior cloning term is added to policy
generation, which should have lesser performance in out-
of-distribution scenario compared to MCQ, as stated. [4]
The loss function for the Q-value updates is defined as:

L(ϕ,D) = E(s,a,r,s′,d)∼D
[(
Qϕ(s, a)−

(
r + γ(1− d)

·max
a′

Qϕ(s
′, a′)

))2]
(2)

where r is the reward, d is the done indicator (0 or 1),
and γ is the discount factor.
The target action a′(s′) is clipped to remain within the
action bounds:
a′(s′) = clip

(
µθtarget(s

′) + clip(ϵ,−c, c), aLow, aHigh
)

ϵ ∼ N (0, σ)
(3)

We will implement TD3+BC using algorithm discussed
in this paper on Python.

• Conservative Q-Learning for Offline Reinforcement
Learning: [3] CQL introduces a conservative Q-function
framework to address overestimation in offline reinforce-
ment learning (RL). By penalizing Q-values for out-of-
distribution (OOD) actions, CQL ensures the expected

value of a policy under the Q-function lower-bounds its
true value.
Conservative Q-Learning Objective: The Q-function is
trained with an augmented loss:

L(Q) =α · E(s,a)∼µ[Q(s, a)]− E(s,a)∼D[Q(s, a)]

+ E(s,a,r,s′)∼D
[
(Q(s, a)− B̂πQ(s, a))2

]
.

(4)

where:
– D is the dataset and µ(a|s) is a chosen distribution.
– B̂π is the empirical Bellman backup operator.
– α > 0 balances conservatism and standard Bellman

error.
Key Properties:
– Lower Bound: Ensures Q(s, a) underestimates true

values for OOD actions.
– Gap Expansion: Penalizes overestimated OOD ac-

tions, keeping policies close to the dataset distribution.
– Safe Improvement: Offers theoretical guarantees for

safe policy improvement:

J(π) ≥ J(πβ)− ζ,

where ζ depends on sampling error and policy diver-
gence.

Practical Implementation: CQL augments standard
actor-critic or Q-learning methods by replacing the Bell-
man error term with the CQL loss. Implementation re-
quires only minor code changes in existing frameworks,
such as SAC or QR-DQN.
Experimental Results: CQL outperforms baselines like
BEAR, BRAC, and BC on benchmarks such as D4RL
(MuJoCo, Adroit, AntMaze) and Atari games. It achieves
up to 2 − 5× higher returns in complex, multi-modal
datasets.
Relevance to Project CQL was chosen as one of the
algorithms to compare the performance of MCQ against

• Advantage-Weighted Regression: Simple and Scalable
Off-Policy Reinforcement Learning [5]
AWR simplifies reinforcement learning by formulat-
ing policy updates as supervised regression, leverag-
ing advantage-weighted samples for improved off-policy
learning.
Objective: The policy is updated by solving:

π = argmax
π

E(s,a)∼µ

[
log π(a|s) · exp

(
Aµ(s, a)

β

)]
,

where:
– Aµ(s, a) = Rµ(s, a)− Vµ(s) is the advantage.
– Rµ(s, a) is the return, and Vµ(s) is the value function.
– β is a temperature hyperparameter controlling advan-

tage weighting.
Key Properties:
– Off-Policy Learning: Efficiently uses static datasets

via experience replay.
– Simple Updates: Employs standard supervised learn-

ing for both policy and value updates.

– Stability: Reduces variance in policy updates through
clipped advantage weights.

Implementation Steps: Each iteration consists of:
1) Compute value function V (s) by minimizing:

LV = E(s,a,r)∼D

[
(Rµ(s, a)− V (s))

2
]
.

2) Update policy π(a|s) using weighted regression:

π = argmax
π

E(s,a)∼D

[
log π(a|s) · exp

(
Rµ(s, a)− V (s)

β

)]
.

Experimental Results: AWR achieves competitive per-
formance on OpenAI Gym benchmarks, surpassing on-
policy methods (e.g., PPO, TRPO) in sample efficiency
and achieving comparable asymptotic performance to off-
policy methods (e.g., SAC, TD3).
Relevance to Project AWR was chosen as one of the
algorithms implemented in this algorithm.

III. METHODOLOGY

This section outlines the methodology followed in this
project, including preliminary tests, dataset preparation, and
the implementation and evaluation of offline RL algorithms.

A. Preliminary Tests on a Simple Map

Initial tests were conducted on a simple map to evaluate the
feasibility of the approach and identify potential challenges.
The process included the following steps:

1) Loaded the map and processed it to create a 2D occu-
pancy grid suitable for path planning.

2) Generated a dataset containing 4,000 A* trajectories,
which included state, action, reward, next state, and done
flag information.

3) Modeled the behavior policy using a Conditional Varia-
tional Autoencoder (CVAE). The policy achieved a 53%
success rate during evaluation.

4) Trained a target policy using the Mildly Conservative
Q-Learning (MCQ) algorithm, which resulted in a 0%
success rate.

Upon analysis, the potential reasons for the poor perfor-
mance of the target policy were identified as:

1) Suboptimal behavior policy performance.
2) Hyperparameters not tuned effectively.
3) An inappropriate reward structure for the task.
Additionally, upon revisiting the literature, we realized that

the CVAE and MCQ approach is better suited for continuous
action spaces. This realization prompted a shift in method-
ology, leading to the adoption of Conservative Q-Learning
(CQL), which is more appropriate for discrete action spaces.

B. Experiments on a Gazebo-Derived Map

To address the limitations identified in the preliminary tests,
we switched to a more complex map derived from a Gazebo
simulation environment and followed these steps:

1) Loaded the Gazebo-derived map and processed it to
create a 2D occupancy grid.

2) Inflated obstacles on the grid to account for safety mar-
gins, considering the radius of TurtleBot3.

3) Generated a dataset of 10,000 trajectories using the A*
algorithm, resulting in approximately 1.5 million transi-
tions.

4) Modeled the behavior policy using BC, which was eval-
uated to establish a baseline.

5) Used Optuna, a hyperparameter optimization framework,
to carry out extensive hyperparameter trials for all al-
gorithms except Batch-Constrained Q-Learning (BCQL),
where time constraints prevented tuning. The best hyper-
parameters were selected to maximize the success rate
for each policy.

6) Trained the target policy using Conservative Q-Learning
(CQL) and evaluated its performance. The results showed
a 0% success rate, which will be discussed in the Results
section.

7) Trained and evaluated these additional algorithms:
• Advantage-Weighted Regression (AWR).
• Batch-Constrained Q-Learning (BCQL).
• Behavior Cloning (BC)

C. TD3+BC in the PointMaze Environment

In addition to experiments on the grid-world environment,
we evaluated the TD3+BC algorithm in the PointMaze envi-
ronment from the D4RL dataset. This experiment aimed to
analyze the impact of out-of-distribution (OOD) actions on
reward functions. The results revealed that the reward function
was significantly affected by OOD actions, highlighting the
importance of handling distributional shifts in offline rein-
forcement learning.

D. Gazebo Modular Navigation Framework

A modular navigation framework was developed in ROS2
using Python and integrated into the Gazebo simulation en-
vironment with TurtleBot3 [1]. This framework facilitates
interchangeable path-planning algorithms, enabling flexibility
for experimentation and integration of offline RL models.

Fig. 1: Modular Code Framework with Navigator and Planner.

a) Framework Components: The framework comprises
the following key components:

• MapProcessor: Converts occupancy grid data into
binary maps, inflates obstacles, and generates navigable
graphs.

• Graph Representation: Builds graphs connecting
map nodes for efficient pathfinding.

• AStar Path-Planning Module: Implements A*
with a modular interface for flexible algorithm integra-
tion.

• Navigation Controller: Guides the robot along
planned paths, ensuring smooth trajectory tracking.

This modular design streamlines the integration of offline
RL algorithms or advanced features like dynamic obstacle
avoidance, offering a versatile platform for navigation re-
search.

b) Testing and Evaluation: The A* algorithm was imple-
mented to process occupancy grids generated from Gazebo’s
simulated laser scans. Key steps included:

• Converting sensor data into binary occupancy grids.
• Inflating obstacles for safe navigation margins.
• Creating navigable graphs and computing optimal paths

using A*.
The navigation controller effectively guided the robot along

these paths, correcting heading and cross-track errors as
needed. Figure 2 depicts TurtleBot3 navigating within the
Gazebo environment.

Fig. 2: TurtleBot3 navigating in the Gazebo environment using
the modular framework.

This modular framework, coupled with its robust testing,
ensures adaptability for integrating RL-based planners and
supports ongoing improvements in navigation tasks.

E. Policy-to-Path Translation

1) From Actions to Spatial Trajectories: After training, the
MCQ policy outputs an action (one of the four discrete
directions) at each state. To create a navigable route, we
roll out the policy from a chosen start position to generate
a sequence of discrete moves. These action sequences are
then translated into a set of connected grid coordinates.

2) Path Smoothing and Refinement: The raw policy output
often contains stepwise transitions. To produce a more
realistic and navigable path for the robot, basic smoothing
techniques are applied. This involves interpolation meth-
ods that reduce zig-zagging behavior and improve overall
path feasibility.

F. Integration into ROS2 Navigation Framework

1) Map Acquisition and Occupancy Grid Handling: The
smoothed path, derived from the MCQ policy, is mapped

Fig. 3: Process of Policy-to-Path Translation: from Sequence
of Actions, to a Smoothed Trajectory

Fig. 4: Path is Followed and Verified in the Simulation
Environment

onto the coordinate system used by ROS2 navigation. The
occupancy grid, obtained from a map server, provides
the global frame of reference for both the path and the
TurtleBot’s pose.

2) ROS2 Path Message Construction: The discrete path
from the policy is converted into a standard ROS2 Path
message. Each point along the path is represented as
a PoseStamped, providing positions (and optionally
orientations) consistent with the robot’s coordinate frame.

3) Path Execution and Control: The Path message is
published to the ROS2 navigation stack. A separate
trajectory-tracking controller subscribes to this topic and
computes velocity commands for the TurtleBot. The robot
thus attempts to follow the MCQ-derived path without
requiring online replanning during execution.

IV. ENVIRONMENT SETUP

A. Initial Tests on a Simple Map

The initial tests were conducted on a simple map (Figure 5a)
to evaluate the feasibility of the proposed approach. The map
contains three types of spaces: free, unknown, and obstacles.
Free space (white) represents navigable areas, obstacles(black)
denote non-navigable regions, and unknown space represents
areas with undefined navigability (gray.) For simplicity, un-
known spaces were treated either as free spaces, and the agent
was assumed to only spawn in free spaces. This simplification
ensured valid trajectory generation. The map was processed
into a 2D occupancy grid (Figure 5b), where free spaces are
represented by white cells and obstacles (including treated
unknown spaces) by black cells. This discretization simplifies

navigation tasks by defining clear boundaries between navi-
gable and non-navigable areas. In later Gazebo experiments,
this assumption was explicitly handled to ensure no trajectories
were generated from invalid (unknown) map states.

(a) Original map used for ini-
tial tests.

(b) Occupancy grid created
from the original map.

Fig. 5: Comparison of the original map and its occupancy grid
representation.

1) Dataset Generation: The dataset was generated using
the A* path-planning algorithm. A total of 4,000 trajectories
were collected, with each trajectory representing a sequence
of states and actions leading from a random start position
to a fixed goal on the 2D occupancy grid. The fixed goal
was placed at a specific location in the grid, chosen to
ensure sufficient path diversity and to encourage trajectories of
varying lengths. The starting positions were selected randomly
from the free spaces of the occupancy grid to avoid invalid or
unreachable states.

The dataset structure is summarized as:
• State: (x, y) coordinates of the agent in the grid.
• Action: Discrete movement directions, represented as:

– 0: Up (-1, 0)
– 1: Down (1, 0)
– 2: Left (0, -1)
– 3: Right (0, 1)

• Reward: -1 for every step to penalize long paths, and
+100 for reaching the goal to incentivize task completion.

• Next State: (x’, y’) coordinates after taking the action.
• Done Flag: Boolean indicating whether the goal has been

reached.
Example: A tuple for a transition might look like:

((1.5, 2.3), 3,−1.0, (1.5, 2.4),False)

Here, the agent moves right from state (1.5, 2.3) to (1.5, 2.4),
receives a reward of −1.0, and has not yet reached the goal.

Transition Function: In response to the feedback received
in the progress report, the transition function is explicitly
defined as:

P ((x, y), a) = (x′, y′),

where (x, y) is the current state, a ∈ {0, 1, 2, 3} is the discrete
action taken, and (x′, y′) is the resulting state. The relationship
between the states and actions is given by:

(x′, y′) = (x, y) + va,

where va is the action vector associated with the action a:

va =


(−1, 0), if a = 0 (Up)
(1, 0), if a = 1 (Down)
(0,−1), if a = 2 (Left)
(0, 1), if a = 3 (Right).

The grid-world boundaries and obstacles impose constraints
such that invalid transitions (e.g., moving into an obstacle or
outside the grid) result in no state change:

P ((x, y), a) = (x, y) if the transition is invalid.

This deterministic transition function defines how the agent’s
state evolves based on its current position and the action
taken, while adhering to the constraints of the grid-world
environment.

Two sample A* trajectories generated on the occupancy grid
are shown in Figure 6. These trajectories illustrate optimal
paths from random starting positions to the fixed goal. The
paths avoid obstacles and demonstrate the deterministic be-
havior of the A* algorithm in finding the shortest path.

(a) Trajectory 1: Starting po-
sition (10, 10) to goal (90,
90).

(b) Trajectory 2: Starting
position (70, 30) to goal (90,
90).

Fig. 6: Sample A* trajectories generated on the occupancy
grid.

Each trajectory consists of a sequence of states (x, y)
and corresponding actions, as defined by the transition func-
tion. The visualizations highlight the deterministic, obstacle-
avoiding nature of the A* algorithm, which ensures that
every path is optimal with respect to the defined grid-world
environment.

B. Gazebo generated map

To evaluate the different policies in a realistic simulation
environment, a custom map was derived from the Gazebo envi-
ronment, and its corresponding occupancy grid was processed
for path planning and navigation tasks. The grid was further
inflated to account for the radius of TurtleBot3, ensuring safety
during navigation.

a) Map and Occupancy Grid: Figure 7 illustrates the
original map and the corresponding occupancy grid created
using simulated sensor data. The occupancy grid accurately re-
flects the environment, differentiating between free space and
obstacles, which is critical for path planning and navigation.

(a) Original Map (b) Occupancy Grid

Fig. 7: Gazebo Environment Map and Generated Occupancy
Grid.

b) Dataset Generation: Figure 8 illustrates a sample
start and goal point overlaid on the inflated occupancy grid.
The start point (blue) was randomly sampled from free space
within the inflated grid to ensure validity and safety during
navigation experiments. The goal point (red) was a fixed point
chosen arbitrarily within the inflated grid.

For each sampled start point, an A* path was generated
to the fixed goal point, and these paths were used to create
the dataset. The dataset structure remained consistent with the
initial experiments, consisting of state, action, reward, next
state, and done flag (s,a,r,s’,d). In total, 10,000 trajectories
were generated, resulting in a dataset of 1,566,932 transitions
and 18,210 unique states.

This figure also highlights the explicit separation of free,
unknown, and occupied cells within the grid. By ensuring
that start and goal points were located in valid free-space
cells, the experiments minimized the risk of generating invalid
trajectories originating from unknown or occupied regions.

Fig. 8: Start and Goal Points Overlaid on the Inflated Occu-
pancy Grid.

The careful selection of start and goal points, combined with
the use of the inflated occupancy grid, ensured that the dataset
captured realistic navigation tasks while explicitly addressing
assumptions made during preliminary tests.

V. RESULTS AND DISCUSSION

The results of this project provide valuable insights into
the performance of various offline RL algorithms for grid-

world navigation. The initial tests on a simple map revealed
the limitations of using a CVAE to model a behavior policy
for MCQ in discrete action spac, prompting a methodological
shift to CQL and other algorithms. Subsequent experiments
on a Gazebo-derived map demonstrated the scalability of the
approach and provided insights into the role of supervised
learning techniques like BC in addressing navigation tasks.
The results suggest that supervised learning methods may
offer a simpler yet effective alternative for certain aspects of
this problem. Additionally, experiments with TD3+BC on the
D4RL dataset highlighted challenges in handling OOD actions.
Detailed results for each stage of the project are presented in
the following subsections.

A. Behavior Policy Modeling Using CVAE

a) Hyperparameter Selection: The effect of hyperparam-
eters, including latent dimension (d), hidden dimension, and
learning rate, was manually studied. Figures 9a and 9b show
the KL divergence loss and reconstruction loss, respectively,
for different combinations of these hyperparameters. The fol-
lowing configuration was selected as it minimized both losses:

• Latent Dimension (d): 4
• Hidden Dimension: 128
• Learning Rate: 0.001

b) Training Details: The model was trained on a dataset
of 4,000 trajectories generated using the A* algorithm. States
and next states were normalized using a standard scaler to
ensure numerical stability. The training process involved:

• Optimizing the loss function using the Adam optimizer
with the selected learning rate.

• Batch size: 128
• Number of epochs: 10

The trained model successfully minimized both reconstruction
and KL divergence losses.

1) Behavior Policy Performance Evaluation: The behavior
policy was evaluated using a dataset of trajectories generated
during the A* algorithm simulations. The evaluation metrics
included:

• Success Rate: The percentage of trajectories that suc-
cessfully reached the fixed goal.

• Collision Rate: The percentage of trajectories that ended
in a collision with obstacles.

• Average Cumulative Reward: The mean total reward
obtained across all trajectories.

• Average Path Length (Successful): The average length
of successful trajectories, providing insight into the pol-
icy’s efficiency.

All subsequent algorithms were evaluated using the same
metrics to ensure consistency and comparability.

a) Results: The results of the behavior policy evaluation
are summarized below:

• The success rate of the behavior policy was 53%, while
the collision rate was 44%. These metrics highlight mod-
erate effectiveness in reaching the goal and a significant
risk of collisions (Figure 14a).

(a) KL Divergence Loss for different hy-
perparameter settings.

(b) Reconstruction Loss for different hy-
perparameter settings.

Fig. 9: Effect of hyperparameters on KL Divergence and
Reconstruction Loss.

• The average cumulative reward across all trajectories was
19.73, reflecting a balance between successes and failures
(Figure 14b).

• Among successful trajectories, the average path length
was 34.04, with lengths ranging from 10 to 70 steps, as
shown in Figure 14c.
b) Insights: The behavior policy achieved a moderate

success rate. The relatively high collision rate suggests the
need for a more conservative policy or improved obstacle
avoidance strategies. The cumulative reward distribution and
path length variability establish a baseline for evaluating
subsequent algorithms.

B. Training Target Policy Using MCQ

The Mildly Conservative Q-Learning (MCQ) algorithm was
used to train the target policy. MCQ balances conservatism
and exploitation by penalizing overestimation of Q-values
for out-of-distribution (OOD) actions. The training process
utilized a pre-collected dataset D = {(s,a, r, s′, d)}, generated
using the A* algorithm. Since the true behavior policy was
unknown, it was approximated using a Conditional Variational
Autoencoder (CVAE) trained on the dataset.

a) Hyperparameters: The following hyperparameters
were used for training:

• Discount Factor (γ): 0.95
• Conservatism Weight (λ): 1.0
• Target Update Rate (τ): 0.005
• Learning Rates:

(a)

(b)

(c)

Fig. 10: Behavior Policy Performance: (a) Success and Col-
lision Rates, (b) Cumulative Reward Distribution, (c) Path
Length Distribution for Successful Trajectories.

– Q-Networks: 3× 10−4

– Policy Network: 1× 10−4

• Latent Dimension (d) for CVAE: 8
• Hidden Dimension for Networks: 256
• Number of Epochs: 10
• Number of Policy Samples (N): 10

b) Training Results: After 10 epochs, the Q-networks
and policy network were successfully trained. The Q-loss and
actor loss during training are shown in Figure 11. The Q-
loss decreased steadily after an initial fluctuation, indicating
that the Q-function approximations were progressively refined.
Similarly, the actor loss decreased consistently, suggesting that
the policy network effectively optimized its objective.

Despite the reduction in both losses, the target policy
failed to generalize effectively to the task, as evidenced by
low success rates during evaluation. This suggests potential
limitations in the behavior policy approximation or insufficient
dataset coverage, which may have led to overestimation of Q-
values for out-of-distribution (OOD) actions.

Target Policy Performance Evaluation
The target policy exhibited poor performance, achieving a

success rate of only 2%, with 98% of trajectories resulting
in failure, as shown in Figure 12. This outcome highlights
significant challenges in the ability of the target policy to

(a) Q-Loss and Actor Loss During
MCQ Training.

Fig. 11: Training losses for MCQ over 10 epochs. The top plot
shows the Q-loss, and the bottom plot shows the actor loss.
Both losses decrease over time, indicating convergence.

generalize to the grid-world navigation task.

Fig. 12: Target Policy Performance: Success Rate.

c) Possible Reasons for Poor Performance: The follow-
ing factors may have contributed to the target policy’s poor
performance:

• Behavior Policy Approximation: The CVAE used to
approximate the behavior policy may not have accurately
reconstructed actions from states. This discrepancy could
lead to suboptimal actions being learned by the target
policy. With just a 53% success rate of for the behavior
policy, this is likely the biggest contributing factor to the
poor performance.

• Hyperparameter Tuning: The hyperparameters for the
MCQ algorithm were not extensively tuned, which might
have limited the ability of the Q-networks and policy
network to effectively learn from the dataset.

• Dataset Size: The dataset used for training may have
been too small, resulting in insufficient coverage of the
state-action space and limiting the target policy’s gener-
alization ability.
d) Suitability of CVAE and MCQ: Further inspection

suggests that the CVAE and MCQ methods are more suited to
environments with continuous action spaces. Their application

to discrete action spaces, as in this project, may introduce
inefficiencies or misalignments with the intended use cases.

C. Behavior Policy Modeling using Behavior Cloning

a) Model Architecture: The behavior policy was imple-
mented as a feedforward neural network with the following
structure:

• Input Layer: The state representation s, consisting of 2
dimensions (x, y coordinates).

• Hidden Layers: Two fully connected layers with 128
units each, using ReLU activations.

• Output Layer: A fully connected layer with 4 units,
corresponding to the discrete action space:
– 0: Up (−1, 0),
– 1: Down (1, 0),
– 2: Left (0,−1),
– 3: Right (0, 1).
b) Hyperparameters Used: The following default values

for hyperparameters were used for initial training:
• Learning Rate (η): 1×10−3, optimized using the Adam

optimizer.
• Batch Size: 64, balancing computational efficiency and

gradient stability.
• Number of Epochs: 20, ensuring sufficient training

iterations.
• Hidden Dimensions: 128 units in each hidden layer.
• Loss Function: Cross-entropy loss, suitable for discrete

action prediction.
c) Training Process: The model was trained on the

dataset using the Adam optimizer. During each epoch:
1) States s were passed through the model to predict action

logits.
2) The cross-entropy loss was computed between the pre-

dicted logits and the ground truth actions a.
3) Backpropagation was performed to update the model

weights, minimizing the loss.
The behavior policy was trained for 20 epochs using BC.

The cross-entropy loss was computed during each epoch to
monitor the training progress. As shown in Figure 13, the
training loss decreased steadily over the epochs, indicating
that the behavior policy successfully learned to approximate
the mapping from states to actions.

1) Behavior Policy Evaluation: The behavior policy mod-
eled using BC was evaluated to assess its effectiveness in
generating trajectories that reach the goal while avoiding
collisions. The evaluation results are presented in terms of
success rate, collision rate, average cumulative reward, and
average path length, as previously defined.

The behavior policy demonstrated the following perfor-
mance:

• Success Rate: 79%
• Collision Rate: 21%
• Average Cumulative Reward: 9.32
• Average Path Length: 70.68

Fig. 13: Behavior Cloning Training Loss Over Epochs. The
loss decreases steadily, demonstrating the model’s conver-
gence.

The evaluation results are visualized in Figure 14. These
plots highlight key aspects of the behavior policy’s perfor-
mance:

• Subfigure 14a shows the success and collision rates,
highlighting the policy’s ability to reach the goal in most
cases.

• Subfigure 14b depicts the distribution of cumulative re-
wards, with most trajectories achieving positive rewards.

• Subfigure 14c presents the distribution of path lengths for
successful trajectories, indicating that most paths are of
moderate length.

The results indicate that the behavior policy successfully
learns to generate feasible trajectories, although further op-
timization may be required to reduce the collision rate and
improve overall efficiency.

2) Hyperparameter Study using Optuna: To improve the
performance of the behavior policy, a hyperparameter opti-
mization study was conducted using Optuna. The objective
function for the optimization was to minimize the training loss
of the behavior policy. The hyperparameters explored during
the study included:

• Hidden Dimension: Number of units in each hidden
layer.

• Number of Layers: Total number of hidden layers in the
network.

• Learning Rate: The learning rate for the optimizer.
a) Optimization Results: The optimization history is

visualized in Figure 15a, which shows the objective value for
each trial and the best value achieved during the optimization
process. The importance of each hyperparameter is depicted
in Figure 15b, highlighting the significant influence of the
number of layers and the learning rate on the training loss.

b) Best Hyperparameters: The best hyperparameters
identified through the study are:

• Hidden Dimension: 256
• Number of Layers: 3
• Learning Rate: 0.000129

c) Retrained Behavior Policy: Using the optimized hy-
perparameters, the behavior policy was retrained for 50
epochs. The training loss during this retraining process is
visualized in Figure 16. The plot indicates a steady decrease

(a)

(b)

(c)

Fig. 14: Behavior Policy Evaluation Results. The plots high-
light the policy’s success and collision rates, reward distribu-
tion, and path efficiency.

(a) Optimization History.

(b) Hyperparameter Importance.

Fig. 15: Results of Hyperparameter Study Using Optuna.

in loss, demonstrating the effectiveness of the optimized
hyperparameters.

The behavior policy was then evaluated after hyperparam-
eter tuning, and the results demonstrated significant improve-
ments over the initial training.

The tuned behavior policy achieved the following perfor-

Fig. 16: Retrained Behavior Policy Training Loss with Opti-
mized Hyperparameters.

mance:
• Success Rate: 94.0%
• Collision Rate: 6.0%
• Average Cumulative Reward: −5.52
• Average Path Length: 106.82 steps
The results are visualized in Figure 17,:
• Subfigure 17a shows the success and collision rates,

emphasizing the high success rate and low collision rate
achieved by the tuned policy.

• Subfigure 17b illustrates the distribution of cumulative
rewards, showing a shift toward higher rewards compared
to the untuned policy.

• Subfigure 17c presents the distribution of path lengths for
successful trajectories, with an increase in the average
path length.

The improvements in success rate and reduction in collision
rate underscore the importance of careful hyperparameter
tuning. The slight reduction in reward and longer path lengths
in comparison to the untuned behavior policy can simply be
attributed to the higher number of paths found. However, a
detailed analysis of this claim has been skipped for brevity.

D. Training Target Policy Using CQL

The target policy was trained using the Conservative Q-
Learning (CQL) algorithm, which minimizes overestimation
of out-of-distribution (OOD) actions by introducing a conser-
vative regularization term. The objective was to optimize the
target policy to generalize effectively using an offline dataset.

a) Training Details: Using the best hyperparameters
identified through Optuna:

• Hidden Size: 512
• Batch Size: 256
• Learning Rate: 0.00137
• Conservative Regularization Weight (α): 0.00071
• Discount Factor (γ): 0.99

The CQL model was trained for 100 epochs. The training
dataset contained 1, 253, 545 samples, while 313, 387 samples
were used for validation.

Unfortunately, the optuna optimization plo generation pro-
cess errored, so those plots have been skipped since this
process took very long training times (4 hours.)

(a)

(b)

(c)

Fig. 17: Evaluation Results for the Tuned Behavior Policy.
The plots highlight improved success rates, better cumulative
rewards, and the distribution of path lengths for successful
trajectories.

b) Loss Curve: Figure 18 shows the training loss curve
for the CQL model. While the initial epochs demonstrate
significant fluctuations, the loss stabilized in later epochs,
indicating convergence.

Fig. 18: Training loss curve for the target policy trained using
CQL

The trained model was saved after 100 epochs, and fur-
ther evaluations were performed to assess its generalization
and navigation capabilities. The results of the target policy’s
performance are presented in the subsequent section.

1) Evaluation of Target Policy Trained with CQL: The
performance of the target policy trained using the Conservative
Q-Learning (CQL) algorithm is summarized as follows:

• Success Rate: 0.0%
• Collision Rate: 49.0%
• Average Cumulative Reward: –58.87
• Average Path Length: Not applicable (no successful

trajectories)
The evaluation metrics indicate suboptimal performance in

navigating the environment. The success rate highlights the
policy’s inability to reach the goal. The collision rate of 49%
that the policy doesn’t always cause the robot to collide, but
fails to effectively guide it towards goal within a reasonable
number of steps.

To save space, the plots visualizing CQL performance
metrics have been omitted. A few potential reasons for the
algorithm’s bad performance include:

• Implementation Challenges: Developing the algorithm
from scratch in PyTorch may have introduced subtle bugs
or inefficiencies, as opposed to leveraging well-tested
implementations from established libraries like d3rlpy
or ACME.

• Dataset Limitations: The dataset structure used in this
study was not directly compatible with standard offline
RL libraries, preventing us from using these tools and
necessitating a custom implementation.

These factors were not thoroughly explored, as the focus
was shifted to other offline RL algorithms such as Advantage-
Weighted Regression (AWR) and Batch-Constrained Q-
Learning (BCQL), which are detailed in subsequent sections.
Future work could benefit from aligning the dataset format
with established offline RL frameworks, which may sim-
plify implementation and improve performance through better-
tested algorithmic components.

E. Actor-Critic Policy with AWR

The Actor-Critic policy was trained using Advantage
Weighted Regression (AWR), which combines supervised
regression with policy iteration. The process involved the
following steps:

a) Hyperparameter Study: Before training, a compre-
hensive hyperparameter optimization was conducted using
Optuna. The objective of the study was to maximize the
success rate of the policy by tuning key hyperparameters. The
hyperparameters included:

• Beta (β): Controls the degree of advantage weighting.
• Gamma (γ): Discount factor for future rewards.
• Learning Rate (η): Step size for the Adam optimizer.
• Hidden Dimensions: Number of units in each hidden

layer of the policy network.
• Number of Layers: Depth of the policy network.
The hyperparameter importance and the results of the study

are visualized in Figure 19. The best hyperparameters identi-
fied were:

• Beta (β): 0.7

• Gamma (γ): 0.95
• Learning Rate (η): 5× 10−4

• Hidden Dimensions: 256
• Number of Layers: 2

(a)

(b)

(c)

(d)

Fig. 19: AWR Hyperparameter Study: (a) Hyperparameter
Importance (b) Hyperparameter Correlaton Plot(c) Slice plot
showing the impact of individual hyperparameters. (d) Objec-
tive value based on architectural parameters.

b) Evaluation of AWR: The results of AWR evaluation
are presented in Figure 20. The training achieved a final
success rate of 88%, with a collision rate of 12%. The average
path length was 13.43 steps, and the average cumalative reward
received was 83.99.

(a)

(b)

(c)

Fig. 20: Performance of the AWR policy, showcasing success
and collision rates (a), average cumulative rewards (b), and
c(c) path length distribution.

F. BCQL Training

a) Training Procedure: The BCQL training was divided
into three stages:

• VAE Training: The VAE was trained for 50 epochs
with a batch size of 256 and a learning rate of 0.001. It
reconstructed actions while regularizing the latent space
using the KL divergence.

• Q-Network Training: The Q-networks were trained us-
ing the Bellman error loss for 50 epochs with a batch
size of 256 and a learning rate of 0.001.

• Perturbation Network Training: The perturbation net-
work was trained to refine the actions generated by the
VAE while remaining close to the behavior policy. This
stage also lasted for 50 epochs.

b) Limitations: Due to time constraints, a formal hy-
perparameter optimization study was not conducted. Default

values for all hyperparameters were used, which may have
impacted the overall performance.

c) Implementation Details: The following parameters
were used:

• State Space: A 2-dimensional space representing (x, y)
coordinates.

• Action Space: A discrete space with 4 actions (up, down,
left, right).

• Latent Dimension: The VAE utilized a latent space of
size 32.

• Device: Training was performed on a GPU where avail-
able.
d) Evaluation: The results of BCQ evaluation are pre-

sented in Figure 21.The BCQL policy achieved a success rate
of 52%, a collision rate of 48%, a cumulative reward of -6.41,
and average path length of 98.65.

(a)

(b)

(c)

Fig. 21: Evaluation metrics for the BCQ policy, including
success rates (a), cumulative rewards (b), and path lengths
(c).

G. TD3+BC Experiment on D4RL dataset

• For TD3+BC experiment, we used Minari(D4RL) dataset
and gymnasium on python to render as in Figure 22,
in anaconda3 customized environment. I trained three
policy with 1,000 epochs, 10,000 epochs, and 100,000
epochs. I used these policy to render the simulation. The

Point Maze domain involves moving a force-actuated ball
(along the X and Y axis) to a fixed target location. The
observation consists of the (x, y) location and velocities.
The dataset consists of one continuous trajectory of the
agent navigating to random goal locations, and thus has
no terminal states. The agent uses a PD controller to
follow a path of waypoints generated with QIteration until
it reaches the goal. The reward function is the negative
Euclidean distance between the goal and the agent.

1) Insights: Since the Point Maze environment is learning
from a PD controller, there is a convergence issue when
the agent is near the goal. For all three policies, the agent
navigates near the goal and then oscillates around the goal
or is stuck in some position nearby. Based on the average
reward of 10 samples for each policy, we can see a trend
that with more training, the performance of the actor is
improving, as in Figure 23. However, in a barely trained policy,
the number of trajectories from the dataset is significantly
reduced, leaving randomly generated goal and starting point
out of distribution. In this situation, we often observe the
agent rush in segmental fashion, or stuck in a corner trying
to pass through obstacles. On the other hand, even with 2.7
hour training, 100,000 epochs, the variance for the reward is
proportionally increasing, as in Figure 24. This imply even
with a policy trained on many trajectories, the effect from out
of distribution starting point and goal still affect gravely on
the reward.

Fig. 22: Mujoco rendered simulation snapshot

Fig. 23: Average reward for each policy

Fig. 24: Variance for each policy with 10 samples

H. Gazebo Simulation Test Results

The RL policy demonstrated a success rate comparable
to its performance in the grid-world test. In most scenarios,
the TurtleBot successfully navigated to the target, even when
minor collisions occurred. However, the policy struggled sig-
nificantly when the environment changed dynamically due to
these collisions, such as shifting a table. In such altered scenes,
the policy failed to adapt and often collided with obstacles
repeatedly, highlighting a key limitation of training in static
environments.

When comparing the RL policy (BC) to the A* algorithm,
the RL policy achieved 87% of A*’s success rate on pre-tested
successful grid-world paths. Failures were mainly due to en-
vironment changes (11%) where untrained scenarios disrupted
navigation, while a smaller proportion (2%) were attributed to
path-following controller errors, causing execution issues even
on valid paths.

Fig. 25: Failed and Crash to Movable Obstacles

1) Example of Successful Navigation: The image below
illustrates an example of a successful navigation episode using
the RL policy. The TurtleBot follows a smooth, collision-free
trajectory to the target, showcasing the policy’s effectiveness
under ideal conditions.

Fig. 26: Successful Navigation Episode

VI. CONCLUSION AND FUTURE WORK

Conclusion: This project explored the application of of-
fline reinforcement learning (RL) algorithms for grid-world
navigation. While methods like Behavior Cloning (BC) and

Advantage-Weighted Regression (AWR) demonstrated suc-
cess, Mildly Conservative Q-Learning (MCQ) and Conserva-
tive Q-Learning (CQL) struggled due to challenges such as be-
havior policy approximation and hyperparameter tuning. The
results highlight the importance of dataset quality, algorithm
suitability, and robust implementation for offline RL tasks.

Future Work: To address the observed limitations, the
following directions are proposed:

• Implement algorithms using standard libraries, such as
d3rlpy or ACME, to reduce implementation overhead
and improve reliability.

• Extend Gazebo experiments by incorporating dynamic
obstacles to test policies in more realistic environments.

• Investigate the performance of MCQ in continuous action
spaces, where TurtleBot3 could use position and heading
as state inputs and output velocity commands as actions.

These steps aim to enhance adaptability, scalability, and real-
world applicability of offline RL algorithms.

REFERENCES

[1] Robin Amsters and Peter Slaets. Turtlebot 3 as a robotics
education platform. In Robotics in Education: Current
Research and Innovations 10, pages 170–181. Springer,
2020.

[2] Michael Bain and Claude Sammut. A framework for
behavioural cloning. In Machine Intelligence 15, pages
103–129, 1995.

[3] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. Conservative q-learning for offline reinforcement
learning. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 1179–
1191. Curran Associates, Inc., 2020.

[4] Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly
conservative q-learning for offline reinforcement learning.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Infor-
mation Processing Systems, volume 35, pages 1711–1724.
Curran Associates, Inc., 2022.

[5] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey
Levine. Advantage-weighted regression: Simple and scal-
able off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

[6] Xin-Yu Xu, Yang-Yang Chen, and Tian-Run Liu. Td3-
bc-ppo: Twin delayed ddpg-based and behavior cloning-
enhanced proximal policy optimization for dynamic op-
timization affine formation. Journal of the Franklin
Institute, page 107018, 2024.

	Introduction
	Motivation
	Objective

	Related work
	Methodology
	Preliminary Tests on a Simple Map
	Experiments on a Gazebo-Derived Map
	TD3+BC in the PointMaze Environment
	Gazebo Modular Navigation Framework
	Policy-to-Path Translation
	Integration into ROS2 Navigation Framework

	Environment Setup
	Initial Tests on a Simple Map
	Dataset Generation

	Gazebo generated map

	Results and Discussion
	Behavior Policy Modeling Using CVAE
	Behavior Policy Performance Evaluation

	Training Target Policy Using MCQ
	Behavior Policy Modeling using Behavior Cloning
	Behavior Policy Evaluation
	Hyperparameter Study using Optuna

	Training Target Policy Using CQL
	Evaluation of Target Policy Trained with CQL

	Actor-Critic Policy with AWR
	BCQL Training
	TD3+BC Experiment on D4RL dataset
	Insights

	Gazebo Simulation Test Results
	Example of Successful Navigation

	Conclusion and Future Work

